Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Inorg Chem ; 63(9): 4419-4428, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38364266

ABSTRACT

The combination of photodynamic therapy and radiotherapy has given rise to a modality called radiodynamic therapy (RDT), based on reactive oxygen species-producing radiosensitizers. The production of singlet oxygen, O2(1Δg), by octahedral molybdenum (Mo6) clusters upon X-ray irradiation allows for simplification of the architecture of radiosensitizing systems. In this context, we prepared a radiosensitizing system using copper-free click chemistry between a Mo6 cluster bearing azido ligands and the homo-bifunctional linker bis-dPEG11-DBCO. The resulting compound formed nanoparticles, which featured production of O2(1Δg) and efficient cellular uptake, leading to remarkable photo- and radiotoxic effects against the prostatic adenocarcinoma TRAMP-C2 cell line. Spheroids of TRAMP-C2 cells were also used for evaluation of toxicity and phototoxicity. In vivo experiments on a mouse model demonstrated that subcutaneous injection of the nanoparticles is a safe administration mode at a dose of up to 0.08 g kg-1. The reported results confirm the relevancy of Mo6-based radiosensitizing nanosystems for RDT.


Subject(s)
Adenocarcinoma , Iodine , Photochemotherapy , Animals , Mice , Molybdenum/chemistry , Photochemotherapy/methods , Polyethylene Glycols
2.
Chemosphere ; 351: 141162, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218235

ABSTRACT

The early detection of upcoming disease outbreaks is essential to avoid both health and economic damage. The last four years of COVID-19 pandemic have proven wastewater-based epidemiology is a reliable system for monitoring the spread of SARS-CoV-2, a causative agent of COVID-19, in an urban population. As this monitoring enables the identification of the prevalence of spreading variants of SARS-CoV-2, it could provide a critical tool in the fight against this viral disease. In this study, we evaluated the presence of variants and subvariants of SARS-CoV-2 in Prague wastewater using nanopore-based sequencing. During August 2021, the data clearly showed that the number of identified SARS-CoV-2 RNA copies increased in the wastewater earlier than in clinical samples indicating the upcoming wave of the Delta variant. New SARS-CoV-2 variants consistently prevailed in wastewater samples around a month after they already prevailed in clinical samples. We also analyzed wastewater samples from smaller sub-sewersheds of Prague and detected significant differences in SARS-CoV-2 lineage progression dynamics among individual localities studied, e.g., suggesting faster prevalence of new variants among the sites with highest population density and mobility.


Subject(s)
COVID-19 , Nanopores , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Wastewater , Pandemics , Prevalence , RNA, Viral
3.
Sci Total Environ ; 902: 166110, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37567313

ABSTRACT

Monkeypox virus (Mpxv) is a dsDNA virus that has become a global concern for human health in 2022. As both infected people and non-human hosts can shed the virus from their skin, faeces, urine and other body fluids, and the resulting sewage contains viral load representative of the whole population, it is highly promising to detect the spread of monkeypox virus in municipal wastewater. We established a methodology for sewage-based monitoring of Mpxv in Prague and analysed samples (n = 24) already early August-October of 2022 in a municipality with 1.4 million inhabitants that only reported 29 cumulative cases in this period. We isolated Mpxv DNA with the Wizard Enviro Total Nucleic Acid Kit, and thereafter detected Mpxv DNA using the EliGene® Monkeypox RT-PCR Kit. Prague wastewater was positive for Mpxv (in total 9 positive samples in periods with 1-9 new cases per week, coinciding with a weekly incidence of 0.07-0.64 per 100,000 inhabitants. The method for confirmation of wastewater positivity via semi-nested PCR and Sanger sequencing was successfully confirmed on positive controls including Mpxv particles and Mpxv-positive wastewater from the Netherlands. However, for Prague wastewater samples, amplification of Mpxv DNA via semi-semi-nested PCR was unsuccessful. This was probably due to extremely low case count, leading to the amplification of non-target bacterial DNA. Compared to other studies with much higher Mpxv prevalence, we show the outstanding sensitivity of our approach for monitoring the spread of monkeypox using wastewater.


Subject(s)
Humans , Wastewater , DNA, Viral/genetics , Sewage , Monkeypox virus/genetics
4.
J Med Chem ; 66(10): 6652-6681, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37134237

ABSTRACT

Purine nucleoside phosphorylase (PNP) is a well-known molecular target with potential therapeutic applications in the treatment of T-cell malignancies and/or bacterial/parasitic infections. Here, we report the design, development of synthetic methodology, and biological evaluation of a series of 30 novel PNP inhibitors based on acyclic nucleoside phosphonates bearing a 9-deazahypoxanthine nucleobase. The strongest inhibitors exhibited IC50 values as low as 19 nM (human PNP) and 4 nM (Mycobacterium tuberculosis (Mt) PNP) and highly selective cytotoxicity toward various T-lymphoblastic cell lines with CC50 values as low as 9 nM. No cytotoxic effect was observed on other cancer cell lines (HeLa S3, HL60, HepG2) or primary PBMCs for up to 10 µM. We report the first example of the PNP inhibitor exhibiting over 60-fold selectivity for the pathogenic enzyme (MtPNP) over hPNP. The results are supported by a crystallographic study of eight enzyme-inhibitor complexes and by ADMET profiling in vitro and in vivo.


Subject(s)
Enzyme Inhibitors , Purine-Nucleoside Phosphorylase , Humans , Purine-Nucleoside Phosphorylase/metabolism , Enzyme Inhibitors/chemistry , Crystallography
5.
J Biol Chem ; 298(11): 102585, 2022 11.
Article in English | MEDLINE | ID: mdl-36223838

ABSTRACT

Tick-borne encephalitis virus (TBEV) is the most medically relevant tick-transmitted Flavivirus in Eurasia, targeting the host central nervous system and frequently causing severe encephalitis. The primary function of its capsid protein (TBEVC) is to recruit the viral RNA and form a nucleocapsid. Additional functionality of Flavivirus capsid proteins has been documented, but further investigation is needed for TBEVC. Here, we show the first capsid protein 3D structure of a member of the tick-borne flaviviruses group. The structure of monomeric Δ16-TBEVC was determined using high-resolution multidimensional NMR spectroscopy. Based on natural in vitro TBEVC homodimerization, the dimeric interfaces were identified by hydrogen deuterium exchange mass spectrometry (MS). Although the assembly of flaviviruses occurs in endoplasmic reticulum-derived vesicles, we observed that TBEVC protein also accumulated in the nuclei and nucleoli of infected cells. In addition, the predicted bipartite nuclear localization sequence in the TBEVC C-terminal part was confirmed experimentally, and we described the interface between TBEVC bipartite nuclear localization sequence and import adapter protein importin-alpha using X-ray crystallography. Furthermore, our coimmunoprecipitation coupled with MS identification revealed 214 interaction partners of TBEVC, including viral envelope and nonstructural NS5 proteins and a wide variety of host proteins involved mainly in rRNA processing and translation initiation. Metabolic labeling experiments further confirmed that TBEVC and other flaviviral capsid proteins are able to induce translational shutoff and decrease of 18S rRNA. These findings may substantially help to design a targeted therapy against TBEV.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Viral Nonstructural Proteins/metabolism , RNA, Viral/metabolism , Capsid/metabolism
7.
Comput Struct Biotechnol J ; 20: 2759-2777, 2022.
Article in English | MEDLINE | ID: mdl-35685361

ABSTRACT

Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.

8.
Sci Rep ; 12(1): 8704, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610319

ABSTRACT

Approximately one third of children with steroid-resistant nephrotic syndrome (SRNS) carry pathogenic variants in one of the many associated genes. The WT1 gene coding for the WT1 transcription factor is among the most frequently affected genes. Cases from the Czech national SRNS database were sequenced for exons 8 and 9 of the WT1 gene. Eight distinct exonic WT1 variants in nine children were found. Three children presented with isolated SRNS, while the other six manifested with additional features. To analyze the impact of WT1 genetic variants, wild type and mutant WT1 proteins were prepared and the DNA-binding affinity of these proteins to the target EGR1 sequence was measured by microscale thermophoresis. Three WT1 mutants showed significantly decreased DNA-binding affinity (p.Arg439Pro, p.His450Arg and p.Arg463Ter), another three mutants showed significantly increased binding affinity (p.Gln447Pro, p.Asp469Asn and p.His474Arg), and the two remaining mutants (p.Cys433Tyr and p.Arg467Trp) showed no change of DNA-binding affinity. The protein products of WT1 pathogenic variants had variable DNA-binding affinity, and no clear correlation with the clinical symptoms of the patients. Further research is needed to clarify the mechanisms of action of the distinct WT1 mutants; this could potentially lead to individualized treatment of a so far unfavourable disease.


Subject(s)
Nephrotic Syndrome , WT1 Proteins , Child , DNA/therapeutic use , Drug Resistance , Humans , Mutation , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Steroids/pharmacology , WT1 Proteins/genetics , WT1 Proteins/metabolism
9.
J Mater Chem B ; 10(17): 3303-3310, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35380154

ABSTRACT

X-Ray-induced photodynamic therapy represents a suitable modality for the treatment of various malignancies. It is based on the production of reactive oxygen species by radiosensitizing nanoparticles activated by X-rays. Hence, it allows overcoming the depth-penetration limitations of conventional photodynamic therapy and, at the same time, reducing the dose needed to eradicate cancer in the frame of radiotherapy treatment. The direct production of singlet oxygen by octahedral molybdenum cluster complexes upon X-ray irradiation is a promising avenue in order to simplify the architecture of radiosensitizing systems. One such complex was utilized to prepare water-stable nanoparticles using the solvent displacement method. The nanoparticles displayed intense red luminescence in aqueous media, efficiently quenched by oxygen to produce singlet oxygen, resulting in a substantial photodynamic effect under blue light irradiation. A robust radiosensitizing effect of the nanoparticles was demonstrated in vitro against TRAMP-C2 murine prostatic carcinoma cells at typical therapeutic X-ray doses. Injection of a suspension of the nanoparticles to a mouse model revealed the absence of acute toxicity as evidenced by the invariance of key physiological parameters. This study paves the way for the application of octahedral molybdenum cluster-based radiosensitizers in X-ray-induced photodynamic therapy and its translation to in vivo experiments.


Subject(s)
Carcinoma , Nanoparticles , Photochemotherapy , Prostatic Neoplasms , Radiation-Sensitizing Agents , Animals , Humans , Male , Mice , Molybdenum/pharmacology , Photochemotherapy/methods , Prostatic Neoplasms/drug therapy , Singlet Oxygen , X-Rays
10.
Inorg Chem ; 61(12): 5076-5083, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35293732

ABSTRACT

The development of singlet oxygen photosensitizers, which target specific cellular organelles, constitutes a pertinent endeavor to optimize the efficiency of photodynamic therapy. Targeting of the cell membrane eliminates the need for endocytosis of drugs that can lead to toxicity, intracellular degradation, or drug resistance. In this context, we utilized copper-free click chemistry to prepare a singlet oxygen photosensitizing complex, made of a molybdenum-iodine nanocluster stabilized by triazolate apical ligands. In phosphate-buffered saline, the complex formed nanoaggregates with a positive surface charge due to the protonatable amine function of the apical ligands. These nanoaggregates targeted cell membranes and caused an eminent blue-light phototoxic effect against HeLa cells at nanomolar concentrations, inducing apoptotic cell death, while having no dark toxicity at physiologically relevant concentrations. The properties of this complex were compared to those of a negatively charged parent complex to highlight the dominant effect of the nature of apical ligands on biological properties of the nanocluster. These two complexes also exerted (photo)antibacterial effects on several pathogenic strains in the form of planktonic cultures and biofilms. Overall, we demonstrated that the rational design of apical ligands toward cell membrane targeting leads to enhanced photodynamic efficiency.


Subject(s)
Iodine , Molybdenum , Cell Membrane , HeLa Cells , Humans , Iodine/pharmacology , Ligands , Molybdenum/pharmacology
11.
Water Res ; 216: 118343, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35358873

ABSTRACT

Many reports have documented that the presence of SARS-CoV-2 RNA in the influents of municipal wastewater treatment plants (WWTP) correlates with the actual epidemic situation in a given city. However, few data have been reported thus far on measurements upstream of WWTPs, i.e. throughout the sewer network. In this study, the monitoring of the presence of SARS-CoV-2 RNA in Prague wastewater was carried out at selected locations of the Prague sewer network from August 2020 through May 2021. Various locations such as residential areas of various sizes, hospitals, city center areas, student dormitories, transportation hubs (airport, bus terminal), and commercial areas were monitored together with four of the main Prague sewers. The presence of SARS-CoV-2 RNA was determined by reverse transcription - multiplex quantitative polymerase chain reaction (RT-mqPCR) after the precipitation of nucleic acids with PEG 8,000 and RNA isolation with TRIzol™ Reagent. The number of copies of the gene encoding SARS-CoV-2 nucleocapsid (N1) per liter of wastewater was compared with the number of officially registered COVID-19 cases in Prague. Although the data obtained by sampling wastewater from the major Prague sewers were more consistent than those obtained from the small sewers, the correlation between wastewater-based and clinical-testing data was also good for the residential areas with more than 7,000 registered inhabitants. It was shown that monitoring SARS-CoV-2 RNA in wastewater sampled from small sewers could identify isolated occurrences of COVID-19-positive cases in local neighborhoods. This can be very valuable while tracking COVID-19 hotspots within large cities.


Subject(s)
COVID-19 , Water Purification , COVID-19/epidemiology , Humans , RNA, Viral , SARS-CoV-2 , Wastewater
12.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34959692

ABSTRACT

Kynurenic acid is a neuroprotective metabolite of tryptophan formed by kynurenine aminotransferase (KAT) catalyzed transformation of kynurenine. However, its high brain levels are associated with cognitive deficit and with the pathophysiology of schizophrenia. Although several classes of KAT inhibitors have been published, the search for new inhibitor chemotypes is crucial for the process of finding suitable clinical candidates. Therefore, we used pharmacophore modeling and molecular docking, which predicted derivatives of heterocyclic amino ketones as new potential irreversible inhibitors of kynurenine aminotransferase II. Thiazole and triazole-based amino ketones were synthesized within a SAR study and their inhibitory activities were evaluated in vitro. The observed activities confirmed our computational model and, moreover, the best compounds showed sub-micromolar inhibitory activity with 2-alaninoyl-5-(4-fluorophenyl)thiazole having IC50 = 0.097 µM.

13.
Viruses ; 13(12)2021 12 06.
Article in English | MEDLINE | ID: mdl-34960720

ABSTRACT

Fullerene derivatives with hydrophilic substituents have been shown to exhibit a range of biological activities, including antiviral ones. For a long time, the anti-HIV activity of fullerene derivatives was believed to be due to their binding into the hydrophobic pocket of HIV-1 protease, thereby blocking its activity. Recent work, however, brought new evidence of a novel, protease-independent mechanism of fullerene derivatives' action. We studied in more detail the mechanism of the anti-HIV-1 activity of N,N-dimethyl[70]fulleropyrrolidinium iodide fullerene derivatives. By using a combination of in vitro and cell-based approaches, we showed that these C70 derivatives inhibited neither HIV-1 protease nor HIV-1 maturation. Instead, our data indicate effects of fullerene C70 derivatives on viral genomic RNA packaging and HIV-1 cDNA synthesis during reverse transcription-without impairing reverse transcriptase activity though. Molecularly, this could be explained by a strong binding affinity of these fullerene derivatives to HIV-1 nucleocapsid domain, preventing its proper interaction with viral genomic RNA, thereby blocking reverse transcription and HIV-1 infectivity. Moreover, the fullerene derivatives' oxidative activity and fluorescence quenching, which could be one of the reasons for the inconsistency among reported anti-HIV-1 mechanisms, are discussed herein.


Subject(s)
Anti-HIV Agents/pharmacology , Fullerenes/metabolism , Fullerenes/pharmacology , HIV-1/drug effects , Nucleocapsid Proteins/metabolism , RNA, Viral/metabolism , Viral Genome Packaging/drug effects , Anti-HIV Agents/metabolism , Genome, Viral/drug effects , HEK293 Cells , HIV-1/genetics , HIV-1/metabolism , HIV-1/physiology , Humans , Protein Binding , Reverse Transcription , Virion/metabolism , Virus Uncoating/drug effects , gag Gene Products, Human Immunodeficiency Virus/metabolism
14.
Int J Mol Sci ; 22(19)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34639130

ABSTRACT

Metabolic transformation of cancer cells leads to the accumulation of lactate and significant acidification in the tumor microenvironment. Both lactate and acidosis have a well-documented impact on cancer progression and negative patient prognosis. Here, we report that cancer cells adapted to acidosis are significantly more sensitive to oxidative damage induced by hydrogen peroxide, high-dose ascorbate, and photodynamic therapy. Higher lactate concentrations abrogate the sensitization. Mechanistically, acidosis leads to a drop in antioxidant capacity caused by a compromised supply of nicotinamide adenine dinucleotide phosphate (NADPH) derived from glucose metabolism. However, lactate metabolism in the Krebs cycle restores NADPH supply and antioxidant capacity. CPI-613 (devimistat), an anticancer drug candidate, selectively eradicates the cells adapted to acidosis through inhibition of the Krebs cycle and induction of oxidative stress while completely abrogating the protective effect of lactate. Simultaneous cell treatment with tetracycline, an inhibitor of the mitochondrial proteosynthesis, further enhances the cytotoxic effect of CPI-613 under acidosis and in tumor spheroids. While there have been numerous attempts to treat cancer by neutralizing the pH of the tumor microenvironment, we alternatively suggest considering tumor acidosis as the Achilles' heel of cancer as it enables selective therapeutic induction of lethal oxidative stress.


Subject(s)
Acidosis/physiopathology , Caprylates/pharmacology , Citric Acid Cycle/drug effects , Glucose/metabolism , Mitochondria/drug effects , Neoplasms/drug therapy , Sulfides/pharmacology , Tumor Microenvironment , Adaptation, Physiological , Antineoplastic Agents/pharmacology , Energy Metabolism , Glycolysis , Humans , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Neoplasms/metabolism , Neoplasms/pathology , Oxidative Stress , Tumor Cells, Cultured
15.
Biomedicines ; 9(9)2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34572290

ABSTRACT

Betulinic acid (BA) is a potent triterpene, which has shown promising potential in cancer and HIV-1 treatment. Here, we report a synthesis and biological evaluation of 17 new compounds, including BODIPY labelled analogues derived from BA. The analogues terminated by amino moiety showed increased cytotoxicity (e.g., BA had on CCRF-CEM IC50 > 50 µM, amine 3 IC50 0.21 and amine 14 IC50 0.29). The cell-cycle arrest was evaluated and did not show general features for all the tested compounds. A fluorescence microscopy study of six derivatives revealed that only 4 and 6 were detected in living cells. These compounds were colocalized with the endoplasmic reticulum and mitochondria, indicating possible targets in these organelles. The study of anti-HIV-1 activity showed that 8, 10, 16, 17 and 18 have had IC50i > 10 µM. Only completely processed p24 CA was identified in the viruses formed in the presence of compounds 4 and 12. In the cases of 2, 8, 9, 10, 16, 17 and 18, we identified not fully processed p24 CA and p25 CA-SP1 protein. This observation suggests a similar mechanism of inhibition as described for bevirimat.

16.
Viruses ; 13(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477490

ABSTRACT

The assembly of a hexameric lattice of retroviral immature particles requires the involvement of cell factors such as proteins and small molecules. A small, negatively charged polyanionic molecule, myo-inositol hexaphosphate (IP6), was identified to stimulate the assembly of immature particles of HIV-1 and other lentiviruses. Interestingly, cryo-electron tomography analysis of the immature particles of two lentiviruses, HIV-1 and equine infectious anemia virus (EIAV), revealed that the IP6 binding site is similar. Based on this amino acid conservation of the IP6 interacting site, it is presumed that the assembly of immature particles of all lentiviruses is stimulated by IP6. Although this specific region for IP6 binding may be unique for lentiviruses, it is plausible that other retroviral species also recruit some small polyanion to facilitate the assembly of their immature particles. To study whether the assembly of retroviruses other than lentiviruses can be stimulated by polyanionic molecules, we measured the effect of various polyanions on the assembly of immature virus-like particles of Rous sarcoma virus (RSV), a member of alpharetroviruses, Mason-Pfizer monkey virus (M-PMV) representative of betaretroviruses, and murine leukemia virus (MLV), a member of gammaretroviruses. RSV, M-PMV and MLV immature virus-like particles were assembled in vitro from truncated Gag molecules and the effect of selected polyanions, myo-inostol hexaphosphate, myo-inositol, glucose-1,6-bisphosphate, myo-inositol hexasulphate, and mellitic acid, on the particles assembly was quantified. Our results suggest that the assembly of immature particles of RSV and MLV was indeed stimulated by the presence of myo-inostol hexaphosphate and myo-inositol, respectively. In contrast, no effect on the assembly of M-PMV as a betaretrovirus member was observed.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Host-Pathogen Interactions , Polyelectrolytes/chemistry , Retroviridae/physiology , Virus Assembly , Alpharetrovirus/physiology , Animals , Betaretrovirus/physiology , Cells, Cultured , Gammaretrovirus/physiology , Gene Products, gag/chemistry , Gene Products, gag/metabolism , Polyelectrolytes/metabolism , Retroviridae/ultrastructure , Virion
17.
Int J Mol Sci ; 21(23)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291486

ABSTRACT

Ameloblastin (Ambn) as an intrinsically disordered protein (IDP) stands for an important role in the formation of enamel-the hardest biomineralized tissue commonly formed in vertebrates. The human ameloblastin (AMBN) is expressed in two isoforms: full-length isoform I (AMBN ISO I) and isoform II (AMBN ISO II), which is about 15 amino acid residues shorter than AMBN ISO I. The significant feature of AMBN-its oligomerization ability-is enabled due to a specific sequence encoded by exon 5 present at the N-terminal part in both known isoforms. In this study, we characterized AMBN ISO I and AMBN ISO II by biochemical and biophysical methods to determine their common features and differences. We confirmed that both AMBN ISO I and AMBN ISO II form oligomers in in vitro conditions. Due to an important role of AMBN in biomineralization, we further addressed the calcium (Ca2+)-binding properties of AMBN ISO I and ISO II. The binding properties of AMBN to Ca2+ may explain the role of AMBN in biomineralization and more generally in Ca2+ homeostasis processes.


Subject(s)
Calcium-Binding Proteins/metabolism , Calcium/metabolism , Dental Enamel Proteins/metabolism , Calcium-Binding Proteins/chemistry , Dental Enamel Proteins/chemistry , Humans , Hydrodynamics , Intrinsically Disordered Proteins/metabolism , Models, Biological , Protein Binding , Protein Isoforms , Protein Multimerization , Spectrum Analysis , Temperature
18.
J Virol ; 94(20)2020 09 29.
Article in English | MEDLINE | ID: mdl-32727872

ABSTRACT

Proper assembly and disassembly of both immature and mature HIV-1 hexameric lattices are critical for successful viral replication. These processes are facilitated by several host-cell factors, one of which is myo-inositol hexaphosphate (IP6). IP6 participates in the proper assembly of Gag into immature hexameric lattices and is incorporated into HIV-1 particles. Following maturation, IP6 is also likely to participate in stabilizing capsid protein-mediated mature hexameric lattices. Although a structural-functional analysis of the importance of IP6 in the HIV-1 life cycle has been reported, the effect of IP6 has not yet been quantified. Using two in vitro methods, we quantified the effect of IP6 on the assembly of immature-like HIV-1 particles, as well as its stabilizing effect during disassembly of mature-like particles connected with uncoating. We analyzed a broad range of molar ratios of protein hexamers to IP6 molecules during assembly and disassembly. The specificity of the IP6-facilitated effect on HIV-1 particle assembly and stability was verified by K290A, K359A, and R18A mutants. In addition to IP6, we also tested other polyanions as potential assembly cofactors or stabilizers of viral particles.IMPORTANCE Various host cell factors facilitate critical steps in the HIV-1 replication cycle. One of these factors is myo-inositol hexaphosphate (IP6), which contributes to assembly of HIV-1 immature particles and helps maintain the well-balanced metastability of the core in the mature infectious virus. Using a combination of two in vitro methods to monitor assembly of immature HIV-1 particles and disassembly of the mature core-like structure, we quantified the contribution of IP6 and other small polyanion molecules to these essential steps in the viral life cycle. Our data showed that IP6 contributes substantially to increasing the assembly of HIV-1 immature particles. Additionally, our analysis confirmed the important role of two HIV-1 capsid lysine residues involved in interactions with IP6. We found that myo-inositol hexasulphate also stabilized the HIV-1 mature particles in a concentration-dependent manner, indicating that targeting this group of small molecules may have therapeutic potential.


Subject(s)
HIV-1/chemistry , Polymers/chemistry , Virus Assembly , gag Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Substitution , HIV-1/genetics , Mutation, Missense , Polyelectrolytes , Structure-Activity Relationship , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism
19.
FEBS Lett ; 594(12): 1989-2004, 2020 06.
Article in English | MEDLINE | ID: mdl-32510601

ABSTRACT

Tick-borne encephalitis virus (TBEV), a member of flaviviruses, represents a serious health threat by causing human encephalitis mainly in central and eastern Europe, Russia, and northeastern Asia. As no specific therapy is available, there is an urgent need to understand all steps of the TBEV replication cycle at the molecular level. One of the critical events is the packaging of flaviviral genomic RNA by TBEV C protein to form a nucleocapsid. We purified recombinant TBEV C protein and used a combination of physical-chemical approaches, such as size-exclusion chromatography, circular dichroism, NMR spectroscopies, and transmission electron microscopy, to analyze its structural stability and its ability to dimerize/oligomerize. We compared the ability of TBEV C protein to assemble in vitro into a nucleocapsid-like structure with that of dengue C protein.


Subject(s)
Encephalitis Viruses, Tick-Borne/chemistry , Viral Proteins/chemistry , Viral Proteins/isolation & purification , Chromatography, Gel , Circular Dichroism , Dengue Virus/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Nucleocapsid/chemistry , Nucleocapsid/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Viral Proteins/genetics , Viral Proteins/metabolism
20.
Molecules ; 25(8)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32325987

ABSTRACT

A major structural retroviral protein, capsid protein (CA), is able to oligomerize into two different hexameric lattices, which makes this protein a key component for both the early and late stages of HIV-1 replication. During the late stage, the CA protein, as part of the Gag polyprotein precursor, facilitates protein-protein interactions that lead to the assembly of immature particles. Following protease activation and Gag polyprotein processing, CA also drives the assembly of the mature viral core. In the early stage of infection, the role of the CA protein is distinct. It controls the disassembly of the mature CA hexameric lattice i.e., uncoating, which is critical for the reverse transcription of the single-stranded RNA genome into double stranded DNA. These properties make CA a very attractive target for small molecule functioning as inhibitors of HIV-1 particle assembly and/or disassembly. Of these, inhibitors containing the PF74 scaffold have been extensively studied. In this study, we reported a series of modifications of the PF74 molecule and its characterization through a combination of biochemical and structural approaches. Our data supported the hypothesis that PF74 stabilizes the mature HIV-1 CA hexameric lattice. We identified derivatives with a higher in vitro stabilization activity in comparison to the original PF74 molecule.


Subject(s)
HIV-1/drug effects , Indoles/chemistry , Indoles/pharmacology , Virion/drug effects , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Capsid Proteins/antagonists & inhibitors , Chemistry Techniques, Synthetic , Drug Design , Humans , Indoles/chemical synthesis , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Molecular Structure , Recombinant Proteins , Virion/ultrastructure , Virus Assembly/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...